1

Beschreibung

Anordnung zur Aufnahme flussigex Analyten

Die aus [1] bekannce Anordnung weist eine M1krotiterplatte auf mit einer Vielzahl von Vertiefungen zur Aufnahme eines Analyten.

Eine solche Mikrotiterplatte wird eingesetzt bedspielsweise In unterschiedlichsten Inwendungen der Medizin und Biotechnologie zur Aufnahme von ux analysierenden Flussigkeiten, beispielsweise im Bereich der DNA-Analyse.

Ublicherweise wird ir jeder Vertiefung ein unterschiediiches zu analysierendes Analyt eingebracht und uber eine pipette, üblicherweise uber eine Vielzahl nebeneinander als sogenannter Pipettierkamm ausgebildetes Element, wobel beispielsweise bei einem Eipettierkamm jeweıls eine Pipette fur jeweils eine Vertiefung einer Zeile der Nikrotiterplatte mit matrixformig angeordneten Vertiefungen vorgesehen ist.

Mittels einer Pipette wird jeweils aufgrund eines in der Pipette aufgebauten Unterdrucks ein Analyt aus der entsprechenden Vertiefung, in die das Analyt eingefullt ist und in die die pipette eingetauchi ist, entnommen, d.h. aufgesaugt.

Die Ripette ist gemaß der aus [1] bekannten Anordnung jeweils Uber einen Schlauch mit einer der jeweiligen Pipette eindeutig zugeordneten Pumpe, mit der der Unterdruck erzeugt wird, derart gekuppelt, dass das Analyt mittels der Punpe Hber die entsprechende Pipette angesaugt werden kann und

2
entsprechend auch wieder, gesteuert von der Pumpe, in die Vertiefung eingebracht werden kann.

Zine solche bekannte Mikrotiterplatte weist beispielsweise 96

Ein Nachtell der aus [1] bekannten Anordnung ist insbesondere darin zu sehen, dass aufgrund der hohen Anzahl von Pumpen es unpraktikabel bis tedlweise richt mehr möglich ist, auf einer derart kleinen Flache von $8 \mathrm{~cm} \times 12 \mathrm{~cm}$ fir jede vertiefung einer Zeile, d.h. für eine so hohe Anzahl von Pipetten jeweils eine eigene fumpe vorzusehen.

Somit ist das Herstellen eines solchen Pipettenkamms und damit elner solchen Anordnung zur AuFnahme flussiger Analyten sehr aufwendig und teuer.

Weiterhin is anzumerken, dass bei der aus [1] bekannten Anordinung üblicherweise jewells eine peristaltische Pumpe zum Ansaugen und Einbringen des Analyten aus bzw. in die jeweilige Vertiefung verwendet wird.

In erheblicher Nacintell dieser bekannten Anoranung ist weiterhin darin $z u$ sehen, dass für die Analyse diblicherweise eine Mindestmenge von einem zu anaiysierenden Analyt in der Größenordinung von 1 ml erforderlich ist.

Eln weiterer Nachteil is darin zu sehen, dass die große Anzahl erforderlicher Pumpen mit zugehöriger Anordnung von Schläuchen sehr kompliziert und damlt storanfällig ist.

Weiterhin ist in (2) eir sogenannter Elow-Thru-Chip ${ }^{T M}$ beschrieben, mittels dem eine Analyse des Aralyten
hinsichtlich der Existenz biologischen Materials in dem Analyt bekannt.

Der Flow-Thru-Chip ${ }^{T M}$, eine Ausgestaltung eines Analysechips, weist eine Vielzahl von Kanalen auf, durch die das Analyt durch den Analysechip gefuhrt wird, wobei die Oberfläche der Kanale feweils mit Fangermolekilen, allgemein mit Molekulen, die das entsprechend gesuchte biologiscie Material, dessen Existenz in dem Analyt nachgewiesen werden soll, vorzugsweise kovalenぇ binden können.

Ist als biologisches Material in dem Analyten ein DNA-Strang mit vorgegebener DNA-Sequenz zu ermitteln, so sind an der Oberflache eines solchen Elussigkeitskanals in dem Elow-ThruChip ${ }^{T M}$ DNA-Fängermolekiile mit einer zu der zu ermitteinden DNA-Sequenz komplementäzen Sequenz aufgebracht.

Ist in dem Analyten das DNA Material mit der gesuchten DNASequenz vorhanden, so bincien die DNA-Stränge mit den entsprechenden DNA-Fangermolekülen mit entgegengesetzter, d.h. komplementärer Sequenz.

Allgemein wird ein solcher Analysecinp häufig zur Analyse, d.h. zum Nachweis makromolekularer Biopolymere, worunter beispielsweise Proteine oder Peptide oder auch DNA-Stränge einer jeweils vorgegebener Erequenz zu verstehen sind, eingesetzt.

Ferner ist es aus [3] bekannt, eine Membran aus Glas oder Silizium herzustellen, die eine Vielzahl von poren mit einem konstanten Durchmesser von $0,1 \mu \mathrm{~m}$ bis $10 \mu \mathrm{~m}$, beispielsweise auch $0,1 \mu \mathrm{~m}$ bis $1 \mu \mathrm{~m}$ aufweist.

Somat liegt der Erfindung das Problem zugrunde, eine Anordnung zur Aufnahme flüssiger Analyten arizugeben, bei der auch eine ernohte Anzahl von vertiefungen in einer solchen Anordinung kostengunstiger hergestellt und betrieben werden
kann, als dies mit einer Pnoranung gemäß dem Stand der Technik möglich ist.

Das Problem wird durch die Anordnung zur Aufnahne Elussiger

Anaiyten mit dem Merkmal gemả̉ dem unabhëngigen
Patentanspruch gelöst.
Eine Anordnang zur Aufnahme flussiger Analyten weist eine Mikrotiterplatte mit einer Vielzahl von Vertiefungen zur Aufnahme eines Analyten auf.

Unter edner Mikrotiterplatte ist im Rahmen der Erfindung eine Platte mit einer Vielzahl von Vertiefungen zur Aufnahme eines Analyten z d verstehen, die üblicherweise Vertiefunger
15 aufweisen, die in einer Matrixform, d.h. in zeilen und Spalten mit ablicherweise konstanten Abstanden von zueinander angeordnet sind. シs ist jedoch in diesem Zusammenhang anzumerken, dass eine Mikrotiterplatte nich之 auf eine solche Anordnung beschränkt ist, sondern dass im Rahmen der Erfindung eine Mikrotiterplatte derart zu verstehen ist, dass sie eine Struktur mit einer Vielzahl beliebig angeordneter Vertiefungen zur Aufnahme eines ilussigen Analyten beschreibt.

Fir eine Vertiefung ist eine Pipette, bei einer Vielzahl von Vertiefungen $\mathrm{H}_{\mathrm{b}} \mathrm{licherweise} \mathrm{einer} \mathrm{Vielzahl} \mathrm{von} \mathrm{Pipetten}$ vorgesehen, woiei jeweils mit einer Pipette ein Analyt aus einer zugenörigen vertiefing, d.h. einer vertieEung, uber der die Pipette aktuell angeordnet ist, entnommen werden kann oder in diese Vertiefung eingebracht werden kann.

Ferner weist die Anordnung eine Pumpe auf, die mit menreren Bipetten derart gekuppelt ist, dass jeweils ein Analyt mittels der Pumpe uber eine zugehorige Pipette angesaugi werden kann und das durch Betatigen der Pumpe Analyte gledchzeitig aus mehreren Vertiefungen angesaugt oder in mehrere Vertiefungen eingebracht werden können.

Auf diese Weise ist es möglich, mit einer senr $\in i n f a c h e n$ Anordnung, insbesondere einer vergitchen mit der Amzahl von Vertiefungen erheblicin verringerten Anzahl von pumpen die 5 Analyte anzusaugen, fur den Fall, dass in dem Ansaugweg, d.h.

Zeit jeweils mehrere, Ublicherweise unterschiedliche Analyten zu analysieren.

Auf diese Weise wird die gesamte Anordnung erheblich kostengunstiger herstellbar und betreibbar. zur Analyse eines in der jeweilıgen Vertiefung eingebrachten Analyt. Die mit dem Aralyt in Kontakt kommende Flache zumindest eines Teils der Analysechips ist derart eingerichtet, dass biologisches Material zum Binden von in
dem Analyten enthaltenen Molekulen auf der Eläche immobilisiert werden kann.

Somit ist es erstmals auf einfache weise möglich, biologisches Material auf robuste und dennoch kostengunstige und schreile Weise parallelisiert zu analysieren.

Die Pipetten können als Pipettierkamm ausgestaltet sein.
Gemaß einer weiteren Ausgestaltung der Erfindung ist es vorgesehen, dass der Pipettierkamu ein erstes Element und ein mit dem ersten Element gekuppeltes zweites Element aufweist, wobei das zwatte Element die Pipetten aufweist.

Zwischen dem ersten Element urd dem zweiten Element kann eine platte angeordnet seln, in der gemäß einer Ausgestaltung der Erfindung die Anaiysechips zur Analyse der Anaiyten engeordnet sind. Fur jeweils einen Analyse-Chip lst
ublicherweise eine Vertiefung zur Aufnahme jeweils zur Analyse eines in der jewelligen Vertiefung aingebrachten Anaiyten vorgesenen.

Die mit dem Analyten in Kontakt kommende Flache zumindest eines Teils der Analysechips kan blologisches Materlal aufweisen, wodurch es möglich wird, in dem Analyten enthaltene biologische Molekile, beispielsweise makromolekulare Biopolymere zu binden.

Unter makromolekularen Biopolymeren sind im Rahmen dieser ErFindung beispielsweise Proteine oder Peptide oder auch DNAMolekule zu verstehen.

Gemäß einer Ausgestaltung der Erfindung weist die Mikrotiterplatte 96 vertiefungen ode: 384 Vertiefungen zur Aufnahme jeweils eines Analyten auf.

Jber mindestens einen Teil der Eipetten kann jeweils eine elastische Membran dichtend angeordnet sein, so dass durch Verformung der Membran der Analyt aus der entsprechenden Vertiefung angesaugt oder in die entsprechende vertiefung eingebracht werden kann.

Anschaulich bedeutete diese Ausgestaltung, dass mittels einer verformung der Membran in der Pipette, d.h. zwischen der Membran und dem Analyten in der Pipette ein Unterdruck bzw. ein Uberdruck erzeugt wird, wodurch eine Bewegung des Analyten innerhalb der Pipette, vorzugsweise durch den Analysechlp hindurch, mלglich ist.

7
Ein Vorteil bei Einsatz einer soicien Memoran ist derin zu sehen, dass geschlossene Kammern gebildet werden, wodurch keine Dërpfe von den Analyten gebłldet wercien können, die möglichezweise fur den Menschen giftig sein könnten.

Eur jede Pipette ist gemeß einer Ausgestaltung der Erfindung eine Prellplatze vorgesenen zum Mischen des durch die pipette gefillten Analyts, wodurch das Analyseergebais weiter veroessert wird, da auEgrund der Prellplatte in dem Strömungsweg des Analyten die Mischung des Analyten und damit das Inkortaktbringen des Analyts mit den Eëngermonekilen auf der Oberfläche der Fiussigkeitskanele des Analysechip weiter verbessert wird.

Weiterhin ist es gemäß einer Ausgestaltung der Erfindung vorgesehen Eur den Eall, dass eine Temperaturkontrolle in der Anordnung beispielsweise für chemische Reaktionen oder biologische Reaktionen erforderlich ist, dass in der Anordnung Messelemente und Heizelemente vorgesehen sind.

Liese Elemente können gemaß einer Ausgestaltung der Enfindung in dem Analysechip integriert sein.

Gemảß einer weiteren Ausgestaltung der Erfindung ist es vorgesehen, dass die Pumpe derart betreiboar ist, dass der Analyt mittels in der Pipette erzeugtem Unterdruck angesaugt wird, der geringer ist als eine in der pipette möglicherweise gebildete Oberflächenspannung des Analyten.

Auf diese Weise wird die Exkenntnis ausgenutzt, dass sich aufgrund des Kapillareffekts insbesondere bed derart geringen Dimensionen bei einer Pipette für eine Mikrotiterplarte ein sehr starker Kapillareffekt bildet, der zu einer sehr erheblichen Oberflächenspannung des aufzunehmenden Analyten suhrt, wenn der gesamte Analyt aus der Vertiefung angesaugt worden 1 st.

8
Auf diese Weise wird sahr einfach ohne eine zusatzzlich evforderlicie komplexe Steuerung vermieden, dass Luft oder ein anderes $G a s$ in die Pipette angesaugt wird, nachdem das gesamte Analyt aus der jeweiligen Vertiefung aufgenomen

Anschaulich kann dia Erfindung darin gesehen werden, dass durci Vorsenen einer Pumpe fur mehrere Pipetten und deren Ausgestaltung derart, dass jeweils gleichzeitig aus mehreren Vertiefungen mittels einer Pumpe unterschiedilche Analyte angesaugt und entsprechend analysiert werden können, die Komplexität und dis Kosten für eine Anordnung zur Aufnahme Elussiger Analyten erheblich verbessert wird.

Ausfuhrungsbeispiele der Erfindung aind in den Figuren dargestellt und werden $1 m$ weiteren naher erläutert.

Es zeigen
Eigur 1 eine Skizze einer Anordnung zur Alifnahme flüssiger Analyten gemär einem ersten Ausfuhrungsbeisplel der Erfindung;

Figur 2 einen Ausschnitt der Anordnung aus Figur 1 im Querschnitt in einem Zusrand, in dem sich das gesamte Analyt in den Vertiefungen befindet;

Figur 3 den Ausschnitt aus Figur 2 in dem Zustand, dass ein Teil der Analyten durch die Fipetten in einen Aufnahmeraum angesaugt worden ist;

9
Figur 4 elnen Querschaitt durch eine Ripette, anhand der ein Erinzip, dem das zweite Ausfünrungsbelspiel der Erfindung zugrunde liegt, veranschaulicht ist;

Figur 5 einen Querschnitt durch eine Pipette, annand der ein Prinzip, dem das zweite Ausfuhrungsbeispiel der Erfindung zugrunde liegt, veranschaulicht ist;

Eigur 6 einer Querschnitt durch eine Pipette, anhand der ein Prinzip, dem das zweite Ausfuhrungsbeisplel der Erfindung zugrunde liegt, veranschaulicht ist.

Erstes Ausfuhrungsbeispiel:

15 Fig. 1 zeigt eine Anordnung 100 zur Aufnahme flussiger Analyten gemäß einem ersten Ausfunrungsbeispiel der Erfindung.

Die Anordnung 100 weist eine Mykrotiterplatte 101 mit einer Vielzahl von Vertiefungen 102 zur Aufnahme von ublicherweise jeweils unterschisdichen Analyten, d.h. zu analysierenden Flussigkeiten, auz.

Auf der Mikrotiterplatte 101 ist eine weitere Platte 103 aufgebracht, die mit der Mikrotiterplatte 101 mittels Schrauben (nicht dargestellt) gekuppelt ist. Die weitere Piatte 103 wird im weiteren noch detailliert erlautert.

Uber der weiteren Platte 103, die entsprechend cien Vertiefungen 102 jeweils Pipetten, wie in Fig. 2 dargestellt, aufweist, sind luftdicht mit einer auf der weiteren platte 103 aufgebrachten Fumpe 104 gekuppelt.

Mittels der Pumpe $10 G$ ist der Druck innerhalb der weiteren Platte 103, wie im weiteren beschrieben, einstelibar, d.h. es ist in den entsprechenden Raum dirch die Pumpe 104 eir. Uberdruck oder ein unterdruck frei einstellbar.

Fig. 2 zeigt einen vergrößerten Ausschnitt 105 der Anozdnung i00 aus Fig.1.

Wie Fig. 2 zu entmehmen ist, ist üblicherweise in die Vertiefungen 102 jeweils ein $z u$ anaiysierendes Analyt 201 eingebracht.

Die in der weiteren Piatte 103 ar.geordneten Pipetten 202 sind devart in der weiteren Platte 103 angeordnet, dass bei Befestigen der weiteren Platte 103 auf der Mikrotiterplatte 102 mittels der nicht dargestellten Schrauben jeweils eine Pipette 202 in eine hierzu zugeordrete Vertiefung 102 und damit $\pm n$ das jewellige Analyt 201 hineinragt.

Die Pipetien 202 sind an einem unteren Kunststoffkörper 203 der weiteren Platte 103 ausgebildet.

Der untere Kunststoffkörper 203 1st mit einem oberen Kunststoffköper 204 gekuppelt, betsplelswelse verklebt.

Gemaß difesem Ausfuhrungsbeispiel ist es vorgesehen, dass zwischen dem unteren Kunststofikirper 203 und den oberen Kunststoffkörper 204 eine Zwischenplaťe 205 angeordnet ist, in der der Analysechips 206, gemäß diesem Ausfuhrungsbeispiel der in [2] beschriebener Analysechip, de= auch als Elow-ThruChip ${ }^{\text {TM }}$ bezeichnet wird, eingebracht ist derart, dass jeweils ein Analysechip 206 jewells fur eine Vertiefung vorgesehen ist.

Anschaulich bedeutet dies, dass jewetls ein Analysechip 206 vorgesehen ist zur Analyse eines Analyrs 201, weiches jeweils in einer Vertiefung 102 enthalten ist und gemäß einem im weiteren beschriebenen Verfahren üoer die Ripetie 202 und den unteren Kunststoffkorper 203 durch den Analysechip 206, d.h. durch die Elussigkeitskanale des Analysechips 205 in den oberen Kunststoffkörper 204 eingesaugt wird.

Auf diese Weise wird das Pnalyt 201 jeweils mit den
Fängermolekulen auf der Oberfläche der Flussigkettskanäle des Analysechips 206 in innigen Kortakt gebracir.

10 einen im wesentlichen der oberen Fiächenform der Vertiefung 102 entsprechenden Raum bildet, der jeweils durch Seiterwände 208 des oberen Kunststoffkörpers 204 gebildet wird.

Anschaulich werden somit in dem ooeren Kunststoffkörper 204 15 Kamern 209 gebildet, die jeweils begreazt sind durch die Wande 20日, die Memoran 207 sowie die Zwiscinenplatte 205 mit dem integrierten Analysechip 206.

Die Membran 207 ist jeweils eine elastische Membran, beispielsweise aus Latex, die mittels einer Druckërderung in einem sich uber dem oberer. Kunststoffkörper 204 befindenden Radm 210, der mit der Pumpe 104 gekuppelt ist, verändert werden kann.

Der Raum 210 kann mit Gas oder mit einer Elussigkeit gefullt sein, wobei die Membran für das entsprechencie Gas oder diee Elussigkeit, mit der der Raum 210 gefullt ist, nicht permeabel ist.

Anschaulich wird somit aufgrund einer Druckveränderung in dem Raum 210 die Nembran 207 verformt, so dass eine Druckveränderung in den jeweiligen Kamern 209 erzeugt wird, wodurch das Analyt 201 uber die Pipette 202 durch den Analysechip 206 entweder angesaugt oder in die vertiefung

Die Flussigkeitskanale in dem Flow-Thzu-Chip ${ }^{T M} 206$ sind mit blologischem Material, d.h. mit DNA-Fängermolekulen gemäß diesen Ausfuhrungsbeispiel belegt, die mittels der bekannten Gold-Sciwe=el-Kopplung an der Oberfiache der 5 Flüssigkeitskanale in dem Analysechip 206 gebunden sinc.

Weist das zu analysierende Analyt 201 DNA-Stränge mit einer Sequenz auf, die der DNA-Sequenz des DNA-Fängermoleküls komplementar ist, so binden diese DNA-Stränge an die DVA-

Nach erfolgter Analyse der Analyten, die beisplelsweise im Rahmen eirer Hybridisterung typischerweise einige Stunden

13
andaciert, wird die Anordnung 100 mittels Memb=anMaximalstellung in der Position 212 entleert.

Spuivongänge der Anordnung mittels einer Spallösung könen in entsprechender Weise wie das Analysieren erfolgen.

Zweites Ausführungsbeispiel:

Das zweite Ausfuhrungsbeispiel entspricht im wesentiichen dem ersten Ausfuhrungsbeisplel mit dem Urterschied, dass keine Membran 207 erforderlich ist.

Um za gewänrleister, dass, nachdem das gesamte Analyt aus einer jeweiligen Vertiefung angesaugt worden ist, keine Luft oder ein anderes Gas aus der Vertiefung in die Pipette eingesaugt wird, wird die Fumpe 104 derart betrieben, dass eine 1 Im weiteren beschriebene Oberfiachenspannung, die sich an dem unteren Ende der jewailigen Dipette 202 in dem Analyten ausbildet, nicht uberschritten wird.

Dieses Prinzip ist in Fig. 4 veranscheulicht.
Fig. 4 zeigt eine Pipette 401, die in eine Vertiefung 402 und dabei in das Anayt 403 eingetaucht ist.

Ein in der Pipette 401 gebildeter Unterdruck ist in Eig. 4 mittels eines Pfeils 404 symbolisiert.

Die Ripette 401 gemä diesem Ausfuhrungsbeisoiel dst als efne Rönre mit einem Durchmesser von ungefänr 1 cm ausgestaltet und an ihrem unteren Ende 405 mit einer Membran 406 abgeschlossen, beisplelsweise verklebt, wobei die Membran 406 eine Vielzahl von Poren 407, mindestens jedoch eine Pore 407, mit einem vorzugsweise konstanten Dunchmesser, gemëß diesem Ausfuhrungsbeisplel einem Durcimesser von $10 \mu \mathrm{~m}$, enthäit.

Allgemein kann eine solche Pore 407 beispielsweise einen Durchmesser von $0,1 \mu \mathrm{~m}$ bis $100 \mu \mathrm{~m}$ aufweisen.

Gemaß diesem Ausfunrungsbeispiel wird eine Membran 407, wie sie aus [3] bekannt ist, aus Glas oder Silizium verwendet.

Gemäß diesem Ausfuhrungsbeisplel ist ohne Einschränkung der Allgemeingultigkeit angenommen, dass die Membran 407 hydrophil ausgestaltet ist.

Das Analyt 403 dringt nun in die Poren 407 der Membran 406 ein und kann durch einen geringen Unterdruck, gemäß diesem Ausfuhrungsbeispiel von beispielsweise 0,03 bar in die Pipetre 401 gesaugt werden.

Ist die Vertiefung 402 geleert, a.h. ist das Analyt 403 vollstandig in der Pipette 401 aufgenommen, so bildet sich, wie in Fig. 5 dargestelit, an jeder Porenoffnung 501 zwischen dem pnalyten 403 und der sich lediglich menr in der Vertiefung 402 befindlichen Luft 502 ein Meniskus 503.

Um den sich bildenden Meniskus 503 derart zu verformen, dass ein Eintritt von Luft 502 in die Pore $\varsigma 07$ möglich wird, muss ein wesentilch stäkerer Unterdruck erzeugt werden als der Unterdruck, der erforderlich ist, um das Analyt 403, allgemein eine flussigkeit, in die Kapillare, d.h. in die Pipette 401, einzusaugen.

Dieser erforderliche Druck P lasst sich gemäß folgender Vorschrift abschëtzen:
$P=2 \cdot \frac{S}{r}$,
wobei

- mit S die Oberflächenspannung der jeweilicen Elissigkeit, d.h. des Analyten 403, und

15

- mit r der Radius der jeweiligen pore 407, bezeichnet wird.

Diese Größen sind für eine vorgegebene Anordnung

Damit ein Lufteintritt in die Pore 407 verhindert werden kann, ist es erforderlich, einen Druck durch die Pumpe zu gewährleisten, der unterhalb dieses abgeschatzten Drucks liegt.

Diese steuerung ist ublicherweise unkritisch, da, wie oben dargelegt, ein Unterdruck von 0,03 bar erforderlich ist, um das Analyt einzusaugen, wobei dieser Druck um eine zehnerpotenz geringer ist als der kritische Druck, bei dem die Oberflächerspannung uberwunden wäre und es zu einem Eintritt von Luft in die Pore 407 kommen könnte.

Dies bedeutet anders ausgecirickt, das der in der Pipette erzeugte Unterdruck P fur diese Fipette mit den oben genannten Abmessungen in einem Bereich von $0,03<p<0,29$ bar liegt.

Somit wird auf sehr einfeche Weise ein Lufteintritt in die Pipette verhindert werden.

Es ist selostverständlich ebenso möglich, bei einer hydrophoben Membran 407, in analoger Weise ein vorgeboazes Gas mittels der ober bescinriebenen Anordnung zu purpen urd einen Filissigkeitseintritt durch die jeweilige pore, allgemein durcin eine Kapillare, zu verhindern.

16

Anschauiach ist durch dieses Ausfuhzungsbeispiel eine Erkennung automatisiert mogijch, ob schon das gesamte Analyt 403 aus der jeweiligen Ver_iefung aufgenommen worden ist.

5 Es ist fernar automatisiert gewährleistet, dass kein anderes Medium in die Analysevorrichtung aufgenommen wird als das zu analysierende Material.

Fig. 6 zelgt den vergrößerten Ausschnitt eines unteren Encies einer Pore 407 aus Fig. 4 bei einem Unterdruck, der in einem. Bereich liegt, der kurz davor ist, dass Iuft 502 in die Eore 407 eintritt.

Dies wird deutlich aufgrund des stark gewölbten Meniskus 503.

In diesem Dokument sind folgende veroffentlichungen zitiert:
[1] M. Winter, Robotik und Automationskonzepte in der kombinatorischen Chemie - Synthese- und Pipettierroboter, Transkript Laborwelを, Nr. 1, S. $25-29,2000$;
[2j A. Steel et al., The Elow-Thru Chip: A Three Dimensional Biochip Plattform, Microarray Biochip Technology, edited by M. Schena, S. 87-117, 2000;
[3] EPJ 29634831

Patentanspriche

i. Anordnung zur Auinahme flüssiger Analyter mit

- einer Mikrotiterplatte mit einer Vielzahl von Vertiefungen zur Aufnahme eines Analyter,
- einer Vielzahl von Pipetten, mit denen ein Araly= aus einer zugehörigen Vertiefung entnommen werden kann,
- mindestens einez Pumpe, die mit mehreren Pipetten gekuppelt ist derart, dass jeweils ein Analyt mittels

2. Anordnung nach Anspruch 1,
bei der die Fipetten als ?lpettierkamm ausgestaltet sind.
3. Anordnung nach Anspruei 2, bei der dex Pipettierkamm eir erstes Element und ein mit dem ersten Elerrent gekuppeltes zweites Element aufweist, wobeł das zweite Element die Pipetさen aufweist.
4. Anordnung nach einem der Anspruche 1 bis 3, bei der zwischen dem ersten Element und dem zweiten Element eine Platte angeordnet ist.
5. Pnordnung nach einem der Anspridcie 1 bis 4, Def der die Analysechips in der Platte angeordnet sind.
6. Anordnung nach einem der Anspruche itbis 5, bei der die mit dem Analyt in Kontakt kommende Flache zumindest eines Teils der Analysechips biologisches Material aufweist zum Binden von in dem Analyten enthaltenen Molekülen.
7. Anordnung nach einem der Anspruche 1 bis 6, bei der die Mikrotiterplatte 96 Vertiefungen oder 334 Vertiefurgen zur Aufnahme eines Analyten aufweist.
8. Anordnung nach einem der Anspruche 1 bis 6, bei der uber mindestens einem Teil der Pipetten jeweils eine elastische Membran angeordnet ist, so dass durch Verformung einem Druck angesaugt wird, der geringer ist als eine in der Pipette möglicherweise gebildete Oberflachenspannung des Analyts.

Zusammenfasaung

Anordnung zur Aufnahme flussiger Analyte

5 Die Anordnung weist einen Mikrotiterplatte mit einer Vielzail von Vertiefungen und einer Vielzahl von Pipetten auf sowie eine Pumpe, die mit mehreren Pipetien derart gekuppelt ist, dass jeweils eir. Analyt mittels der Pumpe uber eine zugehörige Pipette angesaugt werden kann und, dass durch
10 Betatigen der Pumpe Analyte gleichzeitig aus menreren Vertiefungen angesaugt oder in mehrere Vertiefungen eingebracht werden können.

Bezugszeichenliste

100	Anordning
101	Mikrotiterplatte
102	Vertiefung
103	weitere Eiatte
-04	Pumpe
105	Fusschnitt
201	Analyt
202	Pipette
203	Unterer Kunststorfkörper
204	Oberer Kunststoffkörper
205	Zwischenplatte
206	Analysecḣp
207	Membran
208	Wände
209	Obere Kammer
210	Rajm
211	Erste Membranposition
212	Zweite Membranposition
213	Prellplatte
214	Untere Kammer
401	Pipette
402	Vertiefung
403	Analyt
404	Pfeil
405	Unterer Bereich Pipette
406	6 Membran
407	7 Pore
501	1 Porenöffnung
502	2 Luft
503	3 Meniskus

